
Large Scale Deep Learning for Theorem Proving in
HOList: First Results and Future Directions

Sarah Loos

Theorem proving in large theories comes with unique challenges compared to other tasks on
which reinforcement learning has been applied successfully: unlimited action space, sparse
reward, and quickly growing knowledge base. Here, I present our approaches to deal with these
difficulties and our first practical results on the HOList benchmarks. Our particular baseline
solution is named DeepHOL and builds upon the HOList infrastructure and APIs. The action
space is unlimited in our context, as some tactics may take an arbitrarily long list of theorems for
tactic parameters. Also, newly proved theorems are added to the knowledge base, increasing
the complexity of further possible actions. In our baseline approach, we assume that each
formula is given as a sequence of a finite number of tokens and these tokens are known
beforehand. Our tokens correspond to the tokenization produced by HOL Light, but we
communicate formulas in a simple S-expression format to make it easy to process and interpret
them. Although DeepHOL ignores the tree structure and relies on sequence-based models, we
expect more sophisticated machine learning models to exploit this structure for further
improvements. A further simplification is that we assume a relatively small, fixed set of possible
tactic applications. However, these simplifications (finite and fixed set of tokens and actions) are
not assumed by the HOList system in general.

We present a detailed description of our SearchGraph architecture and how DeepHOL interacts
with it. The nodes of the SearchGraph are goals/subgoals, and edges track tactic applications
and resulting subgoals. Any node of the SearchGraph can be expanded and further tried to be
proved. Also, the SearchGraph automatically merges identical goals, which prevents unsound
cyclic proof attempts and other inefficient cyclic behavior. DeepHOL performs proof search in a
breadth-first manner, but omits expanding those subgoals that have no chance to contribute to
closing the main goal.

Our system relies on a two-tower, two-headed policy network that combines a standard
classification model with a ranking model. The classifier head predicts the tactic to be applied,
while the ranking head is for ranking premises for their usefulness as arguments passed to the
tactic application. The two towers of the network are trained for encoding the goal and premises;
these encodings are further processed by a ranking network taking them as inputs. The tactic
prediction head only uses the encoding produced by the goal tower. Both encoding towers
utilize the WaveNet architecture, which is a residual network with dilated convolutions. While the
application of the tactic prediction head is straightforward, we cache the premise encodings in
order to make the evaluation ranking model faster: we need to process all the preceding

premises in the database, which can have over ten thousand statements in the multivariate
complex analysis corpus.

The reward is very sparse because it takes several minutes to find proofs, and a lot of time is
spent in the harder theorems while not learning from unsuccessful proof search traces. So, we
adopt a slow-feedback strategy that is highly distributed: we use two thousand workers running
the proof search mining for new training examples, while the policy network is trained on a
single GPU. In order to decrease the latency of training on newly found examples, we maintain
several pools of examples: old, fresh and imitation and we trained on some predefined mixtures
of those examples. In order to create the training data for the policy network, we prune the
successful proof searches by keeping only those proof-search nodes that were essential for
closing the goal. Furthermore, we prune the parameter lists of the tactic applications by keeping
only those parameters that are necessary to end up with the same subgoals. In addition,
hyperparameters of the proof search (branching factor, theorem list length and maximum
unsuccessful tactic applications per node) are randomized to increase the variety of produced
proofs. All high ranking theorems that were pruned away for some tactic in a successful proof
are stored as hard negatives for their respective goals and are used more frequently as negative
examples in the contrastive loss of the premise ranking model.

After comparing the results of our large scale reinforcement learning pipeline with the model
trained by imitation learning, we present several ways that our HOList and DeepHOL
infrastructure could be utilized for new research.

