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Theorem proving in large theories comes with unique challenges compared to other tasks on 
which reinforcement learning has been applied successfully: unlimited action space, sparse 
reward, and quickly growing knowledge base. Here, I present our approaches to deal with these 
difficulties and our first practical results on the HOList benchmarks. Our particular baseline 
solution is named DeepHOL and builds upon the HOList infrastructure and APIs. The action 
space is unlimited in our context, as some tactics may take an arbitrarily long list of theorems for 
tactic parameters. Also, newly proved theorems are added to the knowledge base, increasing 
the complexity of further possible actions. In our baseline approach, we assume that each 
formula is given as a sequence of a finite number of tokens and these tokens are known 
beforehand. Our tokens correspond to the tokenization produced by HOL Light, but we 
communicate formulas in a simple S-expression format to make it easy to process and interpret 
them. Although DeepHOL ignores the tree structure and relies on sequence-based models, we 
expect more sophisticated machine learning models to exploit this structure for further 
improvements. A further simplification is that we assume a relatively small, fixed set of possible 
tactic applications. However, these simplifications (finite and fixed set of tokens and actions) are 
not assumed by the HOList system in general. 
 
We present a detailed description of our SearchGraph architecture and how DeepHOL interacts 
with it. The nodes of the SearchGraph are goals/subgoals, and edges track tactic applications 
and resulting subgoals. Any node of the SearchGraph can be expanded and further tried to be 
proved. Also, the SearchGraph automatically merges identical goals, which prevents unsound 
cyclic proof attempts and other inefficient cyclic behavior. DeepHOL performs proof search in a 
breadth-first manner, but omits expanding those subgoals that have no chance to contribute to 
closing the main goal.  
 
Our system relies on a two-tower, two-headed policy network that combines a standard 
classification model with a ranking model. The classifier head predicts the tactic to be applied, 
while the ranking head is for ranking premises for their usefulness as arguments passed to the 
tactic application. The two towers of the network are trained for encoding the goal and premises; 
these encodings are further processed by a ranking network taking them as inputs.  The tactic 
prediction head only uses the encoding produced by the goal tower. Both encoding towers 
utilize the WaveNet architecture, which is a residual network with dilated convolutions. While the 
application of the tactic prediction head is straightforward, we cache the premise encodings in 
order to make the evaluation ranking model faster: we need to process all the preceding 



premises in the database, which can have over ten thousand statements in the multivariate 
complex analysis corpus. 
 
The reward is very sparse because it takes several minutes to find proofs, and a lot of time is 
spent in the harder theorems while not learning from unsuccessful proof search traces. So, we 
adopt a slow-feedback strategy that is highly distributed: we use two thousand workers running 
the proof search mining for new training examples, while the policy network is trained on a 
single GPU. In order to decrease the latency of training on newly found examples, we maintain 
several pools of examples: old, fresh and imitation and we trained on some predefined mixtures 
of those examples. In order to create the training data for the policy network, we prune the 
successful proof searches by keeping only those proof-search nodes that were essential for 
closing the goal. Furthermore, we prune the parameter lists of the tactic applications by keeping 
only those parameters that are necessary to end up with the same subgoals. In addition, 
hyperparameters of the proof search (branching factor, theorem list length and maximum 
unsuccessful tactic applications per node) are randomized to increase the variety of produced 
proofs. All high ranking theorems that were pruned away for some tactic in a successful proof 
are stored as hard negatives for their respective goals and are used more frequently as negative 
examples in the contrastive loss of the premise ranking model. 
 
After comparing the results of our large scale reinforcement learning pipeline with the model 
trained by imitation learning, we present several ways that our HOList and DeepHOL 
infrastructure could be utilized for new research. 
 
 
 
 
 


